
O

Resource IT
Conversion

training

June 2021| switch@portotechhub.com

mailto:switch@portotechhub.com


page (2);

Goal

▪ To make a graduate with or without a STEM background to be able to:

• Develop high-quality standalone and web-based applications and services
• Understand and apply an iterative and incremental/agile development process
• Analyze the requirements of a problem presented by a client and, as a team, specify a solution
• Design the solution using appropriate architectural and design patterns
• Implement the solution in Java/JavaScript using Test Driven Development (TDD) and Continuous

Integration (CI)

• Know and apply the essential technologies and best practices to be productive in an OO (Java) 
or web development team using CI



page (3);

The SWitCH approach

▪ The SWitCH program aims to fulfil this objective:
• A careful selection of the candidates
• 1 school year (32 weeks of classes)
• An innovative pedagogical approach based on project-based learning
• A barebones approach, focusing on the minimum content necessary for the students to be 

successful in the typical professional environment
• A semi-professional work environment based on teamwork, peer-learning and Scrum
• Focused and intensive: 35 hours/week in the classroom



page (4);

Pedagogical approach

▪ We call it CDIO-IL and it is a combination of:

• Disciplinary teaching (33%)
• Lectures and regular lab classes

• Project Based Learning (67%)
• Project development in a team of 9-10 elements
• Scrum software development process (2-weeks sprints)
• Project is supplied by a real software company (product owner)

• Global backlog of user stories and sprints’ backlogs adapted to the learning process’ needs



page (5);

Pedagogical approach

▪ How can it be so fast and effective?
• By the careful application of selected active learning pedagogical patterns and project-based

learning

• Learn by example
• Providing solutions upfront help the student scaffolding knowledge

• Learn by doing
• All work is to be produced in the context of the project, including in regular classes
• The immediate application of new knowledge in a real application helps the students cement the 

knowledge and learning more effectively



page (6);

Pedagogical approach

▪ How can it be so fast and effective?
• Teamwork and Peer-learning

• Provides a first support network and helps the student consolidate learning

• Feedback
• The teacher’s main role is to provide quality feedback, promoting rework and improvement

• Focus on quality of work done
• Grades reflect quality (below standards, met the standards, noteworthy)
• Deliveries that don’t meet the requirements and minimum quality standards are not accepted



page (7);

Program Structure

▪ Two 16-week semesters
▪ Up to 30 students/class, 9-10 elements/group
▪ 35 hours/week workload

• 15 hours/week of regular classes
• 20 hours/week of autonomous work in a scrum team

▪ 3 simultaneous courses each semester
• 1 core software engineering and programming course
• 1 technical course covering key supporting technologies and competencies
• 1 project course to develop a product for a client



page (8);

Program Structure

▪ 1st semester
• Iterative agile software development
• Computing systems and networks
• Databases
• Project I

▪ 2nd semester
• Web programming and Service-Oriented Architecture (SOA)
• DevOps
• Project II



page (9);

Program Structure



page (10);

Timeline



page (11);

Course Information



page (12);

Iterative agile software development

▪ Main goals
• Understand the need for the existence of a software development process (SDP) and the 

dimensions and stakeholders of the SDP
• Apply an iterative and incremental agile SDP, using appropriate artefacts and notations for 

describing the problem, the analysis, the design and the solution
• Apply methodologies of OO analysis and design, including simple OO design principles and 

patterns, namely GRASP, SOLID and GoF
• Apply methodologies and tools for converting design to implementation in Java
• Apply object-relational mapping techniques and tools



page (13);

Iterative agile software development

▪ Technologies
• UML
• Software design patterns
• Git version control system
• Java
• JUnit



page (14);

Databases

▪ Main goals
• Understand the fundamentals of database management systems (DBMS), with particular 

emphasis on relational databases
• Apply relational data modelling principles to design a database for a project, taking into 

account functional requirements and constraints
• Understand relational algebra and use SQL to manipulate information in a relational

database



page (15);

Databases

▪ Technologies
• SQL
• Oracle DBMS



page (16);

Computing systems and networks

▪ Main goals
• Understand the functional organization of a conventional computer
• Use information representation and logical operations
• Use shell script programming to solve small scale problems
• Understand how the TCP/IP stack and the most relevant associated protocols work
• Be able to design network application protocols, develop and implement network 

applications in Java



page (17);

Computing systems and networks

▪ Technologies
• Linux
• TCP/IP
• HTTP
• Sockets
• Java



page (18);

Project I

▪ Main goals
• Work in a team, in the context of a software development project, applying TDD and Scrum
• Use the software development and teamwork tools and approaches that are appropriate for 

each moment and context
• Apply methodologies of OO analysis and design, including simple OO design principles and 

patterns
• Apply the appropriate methodologies and tools to implement and test the design in Java
• Understand essential documentation and presentation best practices and apply them to 

communicate the results of the software project



page (19);

Project I

▪ Technologies
• UML
• Scrum
• Git + Jenkins + SonarQube
• Java
• JUnit
• Oracle DBMS
• SQL



page (20);

Web programming & SOA

▪ Main goals
• Analyze the requirements and concepts of a web-based Distributed and Decentralized Software 

Systems (DDSS)
• Design DDSS using industry standard design and architecture styles and patterns, especially Domain-

Driven Design (DDD)
• Implement DDSS according to design models using a Java and JavaScript stack
• Apply an iterative and incremental agile Software Development Process, using a test-driven approach



page (21);

Web programming & SOA

▪ Technologies
• DDD
• DDSS software design and architectural patterns
• JPA ORM
• Java
• Javascript/TypeScript
• Web Services (REST)
• React.JS
• Etc.



page (22);

DevOps

▪ Main goals
• Understand the fundamentals of computer systems administration and security
• Be able to install and manage Linux systems
• Use virtual machines locally and in virtualization infrastructures
• Use appropriate DevOps/scripting tools to automate the deployment of applications and

containers
• Use the different components of a continuous delivery pipeline



page (23);

DevOps

▪ Technologies
• Windows, Linux
• VirtualBox, VMware
• Chef
• Ansible
• Docker
• Etc.



page (24);

Project II

▪ Main goals
• Work with a team, in the context of a software development project, applying Scrum and 

continuous integration (CI)
• Apply industry standard methodologies and architectural patterns for DDSS analysis and

design
• Apply DevOps methodologies and tools to implement, test and deploy the application
• Understand essential documentation and presentation best practices and apply them to 

communicate the results of the software project



page (25);

Project II

▪ Technologies
• UML
• Scrum
• Git + Jenkins + SonarQube (or an equivalent stack)
• Docker containers
• Java, JavaScript/TypeScript
• Database (Oracle or MySQL)
• Etc.



O

O

ASSOCIATED COMPANIES


